Avoidance of Singularity during the Gravitational Collapse with String T-Duality Effects

Author:

Jusufi KimetORCID

Abstract

In this paper, we explore the gravitational collapse of matter (dust) under the effect of zero-point length l0. During the gravitational collapse, we neglect the backreaction effect of pre-Hawking radiation (in the sense that it is a small effect and cannot prevent the formation of an apparent horizon), then we recast the internal metric of a collapsing star as a closed FRW universe for any spherically symmetric case and, finally, we obtain the minimal value for the scale factor, meaning that the particles never hit the singularity. We argue that the object emerging at the end of the gravitational collapse can be interpreted as Planck stars (black hole core) hidden inside the event horizon of the black hole, with a radius proportional to (GMl02/c2)1/3. Quite interestingly, we found the same result for the radius of the Planck star using a free-falling observer point of view. In addition, we point out a correspondence between the modified Friedmann’s equations in loop quantum gravity and the modified Friedmann’s equation in string T-duality. In the end, we discuss two possibilities regarding the final stage of the black hole. The first possibility is that we end up with Planck-size black hole remnants. The second possibility is that the inner core can be unstable and, due to the quantum tunneling effect, the spacetime can undergo a black-hole-to-white-hole transition (a bouncing Planck star).

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference44 articles.

1. On Continued gravitational contraction;Oppenheimer;Phys. Rev.,1939

2. Gravitational collapse and space-time singularities;Penrose;Phys. Rev. Lett.,1965

3. Black Hole Explosion;Hawking;Nature,1974

4. Particle Creation by Black Holes;Hawking;Commun. Math. Phys.,1975

5. Bardeen, J.M. (1968, January 9–13). Non-singular general-relativistic gravitational collapse. Proceedings of the International Conference GR5, Tbilisi, Georgia.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3