Contributions of the Swift/UV Optical Telescope to the Study of Short Gamma-ray Bursts

Author:

De Pasquale M.1ORCID

Affiliation:

1. Department of Mathematics, Informatics, Physics and Earth Sciences, University of Messina, Viale F. S. D’Alcontres 31, 98166 Messina, Italy

Abstract

Before the Neil Gehrels Swift Observatory, we knew little about short-duration Gamma-ray bursts (sGRBs). Their briefness led to the suspicion that they resulted from mergers of compact objects, e.g., two neutron stars or a neutron star and a black hole. However, proof was lacking. sGRB post-prompt emission, or afterglow, was undetected; thus, we could not apply essential investigation tools. Swift was the first to pinpoint sGRB afterglows. sGRBs were found to differ from long GRBs in terms of host galaxies, offset from host, environment, energy and progenitors. The Swift UV/Optical Telescope (UVOT) has greatly contributed to these discoveries with its unique combination of fast repointing capabilities and UV sensitivity. But the long-sought proof of the sGRB–merger connection arrived in 2017. The gravitational signal GW 170817A caused by two NSs collision was associated with sGRB 170817A. Swift/UVOT discovered that its early optical emission was—unusually for GRB afterglows—thermal. It was interpreted as an emission from the merger’s hot debris: the kilonova. Kilonovae have seemingly been found in other sGRBs and—puzzingly—in long GRBs. Over almost 20 years, Swift/UVOT observations have also been pivotal to understanding peculiar events. In this review, I will summarize UVOT’s major contributions in the fields highlighted.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference108 articles.

1. Observations of Gamma-ray Bursts of Cosmic Origin;Klebesadel;Astrophys. J.,1973

2. The Compton Gamma-ray Observatory;Gehrels;Sci. Am.,1993

3. Identification of two classes of Gamma-ray Bursts;Kouveliotou;Astrophys. J. Lett.,1993

4. An observational imprint of the collapsar model of long gamma-ray bursts;Bromberg;Astrophys. J.,2012

5. SAX, the wide band mission for X-ray astronomy;Piro;MmSAI,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3