Density Operator Approach to Turbulent Flows in Plasma and Atmospheric Fluids

Author:

Zloshchastiev Konstantin G.ORCID

Abstract

We formulate a statistical wave-mechanical approach to describe dissipation and instabilities in two-dimensional turbulent flows of magnetized plasmas and atmospheric fluids, such as drift and Rossby waves. This is made possible by the existence of Hilbert space, associated with the electric potential of plasma or stream function of atmospheric fluid. We therefore regard such turbulent flows as macroscopic wave-mechanical phenomena, driven by the non-Hermitian Hamiltonian operator we derive, whose anti-Hermitian component is attributed to an effect of the environment. Introducing a wave-mechanical density operator for the statistical ensembles of waves, we formulate master equations and define observables: such as the enstrophy and energy of both the waves and zonal flow as statistical averages. We establish that our open system can generally follow two types of time evolution, depending on whether the environment hinders or assists the system’s stability and integrity. We also consider a phase-space formulation of the theory, including the geometrical-optic limit and beyond, and study the conservation laws of physical observables. It is thus shown that the approach predicts various mechanisms of energy and enstrophy exchange between drift waves and zonal flow, which were hitherto overlooked in models based on wave kinetic equations.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3