Affiliation:
1. Ramsaday College, Amta, Howrah 711401, West Bengal, India
Abstract
Quark–Gluon plasma driven by the strong force is subject to the conservativeness of the baryon number, net electric charge, strangeness, etc. However, the fluctuations around their mean values at specific temperatures and chemical potentials can provide viable signals for the production of Quark–Gluon plasma. These fluctuations can be captured theoretically as moments of different orders in the expansion of pressure or the thermodynamic potential of the system under concern. Here, we look for possible explanations in the methodologies used for capturing them by using the framework of the Polyakov–Nambu–Jona-Lasinio (PNJL) model under the 2 + 1 flavor consideration with mean-field approximation. The various quantities thus explored can act to signify meaningfully near the phase transitions. Justifications are also made for some of the quantities capable of serving necessarily under experimental scenarios. Additionally, variations in certain quantities are also made for the different collision energies explored in the high-energy experiments. Rectification of the quantitative accuracy, especially in the low-temperature hadronic sector, is of prime concern, and it is also addressed. It was found that most of the observables stay in close proximity with the existing lattice QCD results at the continuum limit, with some artifacts still remaining, especially in the strange sector, which needs further attention.
Funder
University Grant Commission