Multiverse Predictions for Habitability: Element Abundances

Author:

Sandora McCullen,Airapetian Vladimir,Barnes Luke,Lewis Geraint F.,Pérez-Rodríguez Ileana

Abstract

We investigate the dependence of elemental abundances on physical constants, and the implications this has for the distribution of complex life for various proposed habitability criteria. We consider three main sources of abundance variation: differing supernova rates, alpha burning in massive stars, and isotopic stability, and how each affects the metal-to-rock ratio and the abundances of carbon, oxygen, nitrogen, phosphorus, sulfur, silicon, magnesium, and iron. Our analysis leads to several predictions for which habitability criteria are correct by determining which ones make our observations of the physical constants, as well as a few other observed features of our universe, most likely. Our results indicate that carbon-rich or carbon-poor planets are uninhabitable, slightly magnesium-rich planets are habitable, and life does not depend on nitrogen abundance too sensitively. We also find suggestive but inconclusive evidence that metal-rich planets and phosphorus-poor planets are habitable. These predictions can then be checked by probing regions of our universe that closely resemble normal environments in other universes. If any of these predictions are found to be wrong, the multiverse scenario would predict that the majority of observers are born in universes differing substantially from ours, and so can be ruled out, to varying degrees of statistical significance.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference113 articles.

1. Carter, B. (1974). Confrontation of Cosmological Theories with Observational Data, Springer.

2. Universe or multiverse?;Carr;Astron. Geophys.,2008

3. Weinberg, S. (2005). Living in the Multiverse, Cambridge University Press. Universe or Multiverse: 2007.

4. The anthropic principle and the structure of the physical world;Carr;Nature,1979

5. Barrow, J.D., and Tipler, F.J. (1986). The Anthropic Cosmological Principle, Oxford University Press.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3