Quantum Scalar Fields Interacting with Quantum Black Hole Asymptotic Regions

Author:

Gambini Rodolfo1ORCID,Pullin Jorge2ORCID

Affiliation:

1. Instituto de Física, Facultad de Ciencias, Iguá 4225, esq. Mataojo, Montevideo 11400, Uruguay

2. Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001, USA

Abstract

We continue our work on the study of spherically symmetric loop quantum gravity coupled to two spherically symmetric scalar fields, with one that acts as a clock. As a consequence of the presence of the latter, we can define a true Hamiltonian for the theory. In previous papers, we studied the theory for large values of the radial coordinate, i.e., far away from any black hole or star that may be present. This makes the calculations considerably more tractable. We have shown that in the asymptotic region, the theory admits a large family of quantum vacua for quantum matter fields coupled to quantum gravity, as is expected from the well-known results of quantum field theory on classical curved space-time. Here, we study perturbative corrections involving terms that we neglected in our previous work. Using the time-dependent perturbation theory, we show that the states that represent different possible vacua are essentially stable. This ensures that one recovers from a totally quantized gravitational theory coupled to matter the standard behavior of a matter quantum field theory plus low probability transitions due to gravity between particles that differ at most by a small amount of energy.

Funder

Hearne Institute for Theoretical Physics

Fondo Clemente Estable

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3