Solar Sail Trajectories to Earth’s Trojan Asteroids

Author:

Quarta Alessandro A.1ORCID,Mengali Giovanni1ORCID

Affiliation:

1. Department of Civil and Industrial Engineering, University of Pisa, I-56122 Pisa, Italy

Abstract

The recent discovery of Earth’s second Trojan asteroid (2020 XL5), which will remain in the vicinity of the Sun–[Earth+Moon] triangular Lagrangian point L4 for at least 4000 years, has attracted the attention of the scientific community as a remarkable example of those elusive objects that are the witnesses of the first phase of our Solar System. The possibility that an Earth’s Trojan asteroid (ETa) may represent a pristine record of the initial conditions of the Solar System formation makes these small objects an interesting target for a robotic exploration mission. This paper analyzes orbit-to-orbit Earth–ETa transfer trajectories of an interplanetary spacecraft propelled by a solar sail. In the last decade, some pioneering space missions have confirmed the feasibility and potentiality of the solar sail concept as a propellantless propulsion system able to convert the solar radiation pressure in a continuous thrust by means of a large, lightweight and highly reflective surface. Using the state-of-the-art level of solar sail technology, this paper studies the performance of a solar-sail-based transfer trajectory toward an ETa from an optimal viewpoint and with a parametric approach.

Funder

University of Pisa, Progetti di Ricerca di Ateneo

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3