Abstract
In this paper, we propose that cosmological time is a quantum observable that does not commute with other quantum operators essential for the definition of cosmological states, notably the cosmological constant. This is inspired by properties of a measure of time—the Chern–Simons time—and the fact that in some theories it appears as a conjugate to the cosmological constant, with the two promoted to non-commuting quantum operators. Thus, the Universe may be “delocalised” in time: it does not know the time, a property which opens up new cosmological scenarios, as well as invalidating several paradoxes, such as the timelike tower of turtles associated with an omnipresent time line. Alternatively, a Universe with a sharply defined clock time must have an indeterminate cosmological constant. The challenge then is to explain how islands of localized time may emerge, and give rise to localized histories. In some scenarios, this is achieved by backward transitions in quantum time, cycling the Universe in something akin to a time machine cycle, with classical flow and quantum ebbing. The emergence of matter in a sea of Lambda probably provides the ballast behind classical behaviour.
Subject
General Physics and Astronomy
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献