Comparative Evaluation of Mineral Trioxide Aggregate Obturation Using Four Different Techniques—A Laboratory Study

Author:

Mathew Abhishek Isaac,Lee Silvia Chamin,Rossi-Fedele Giampiero,Bogen George,Nagendrababu Venkateshbabu,Ha William NguyenORCID

Abstract

This study aimed to compare the density of mineral trioxide aggregate (MTA) as a root canal filling material in the apical 5 mm of artificial root canals. Forty transparent acrylic blocks with 30-degree curved canals were instrumented and allocated into four compaction technique groups (n = 10): Lawaty (hand files); gutta-percha (GP) points; auger (nickel–titanium rotary files in reverse mode); and plugger technique. Filled canals were weighed after setting the MTA to calculate difference in mass. Two postoperative radiographs compared radiopacity by measuring luminance variations at 0.5 mm, 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm from the root apex. Obturation time was measured using a digital chronometer. The significance level was set to p < 0.05. The plugger group had a lower mass. Relative luminance was significantly higher for the Lawaty group than the plugger group at all examined apical levels. The relative luminance of the auger and GP groups were significantly higher than the plugger group at depths between 0.5 mm and 2 mm. Relative luminance was highest for the Lawaty technique at all depths between 0.5 mm and 4 mm. The Lawaty technique group was associated with increased obturation time compared with pluggers. Compacting MTA in curved canals with the Lawaty technique has the highest mass and radiopacity but requires more time.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3