A Modal Frequency Estimation Method of Non-Stationary Signal under Mass Time-Varying Condition Based on EMD Algorithm

Author:

Gao Lei,Li Xiaoke,Yao Yanchun,Wang Yucong,Yang Xuzhe,Zhao Xinyu,Geng Duanyang,Li Yang,Liu Li

Abstract

A method to estimate modal frequency based on empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) is proposed. This method can decrease the difficulties in identifying modal frequency of combine harvesters. First, we used 16 acceleration sensors installed at different test points to collect vibration signals of a corn combine harvester under operating conditions (mass time-varying conditions). Second, we calculated mean value, variance and root mean square (RMS) value of the vibration signals, and analyzed its stationarity of vibration signals. Third, the main frequencies of the 16 points were extracted using the EMD and EEMD methods. Finally, we considered modal frequencies identified by the SSI algorithm as standard, and calculated the fitting degrees of the EMD and EEMD methods. The results show that in different time periods (0~60 s and 60~120 s), the maximum differences of the mean value, variance and RMS value of signals were 0.8633, 171.1629 and 11.3767, and the vibration signal under the operating condition of field harvesting can be regarded as a typical non-stationary random vibration signal. The EMD method had more modal aliasing than EEMD, and when we obtained the fitting equations of EMD, EEMD and SSI methods, the value of the Euler distance between the EMD fitting equation and the SSI fitting equation was 446.7883, while that for EEMD and SSI was 417.2845. The vibration frequencies calculated by the EEMD method is closer to the modal frequencies identified by SSI algorithm. The proposed method provides a reference for modal frequency identification and vibration control in a complex working environment.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. Research Progress on Working Vibration problems of Grain Combine;Guan;J. Chin. Agric. Mech.,2017

2. Conceptual Cab Suspension System for a Self-propelled Agricultural Machine, Part 1: Development of a Linear Mathematical Model

3. The NVH Phenomena Analysis in Corn Harvester-Based on Vibration Dose and A -meter-weight Noise;Zhou;J. Agric. Mech. Res.,2015

4. Structural optimization for rack of boat-type tractor based on sensitivity analysis;Zhou;Trans. Chin. Soc. Agric. Eng.,2016

5. Finite element mode analysis and experiment of combine harvester chassis;Li;Trans. Chin. Soc. Agric. Eng.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3