Evolution Law of Three-Dimensional Non-Uniform Temperature Field of Tunnel Construction Using Local Horizontal Freezing Technique

Author:

Pang Changqiang,Cai Haibing,Hong RongbaoORCID,Li Mengkai,Yang Zhe

Abstract

The formation quality of a frozen wall is one of the prerequisites for tunnel excavation using artificial ground freezing techniques. However, the non-uniformity of temperature distribution along the length direction of the freezing pipe is often ignored in the actual freezing engineering, which leads to a thin frozen wall at a local position that does not meet the design requirements. Therefore, exploring the evolution law of three-dimensional non-uniform freezing temperature fields is necessary. In this paper, a tunnel horizontal freezing model test system was established based on the similarity criterion of hydro–heat coupling, and the temperatures at three sections were tested using thermocouple temperature sensors. The results show that the temperature drop curves of measurement points suffer from three periods: steep drop, slow drop and tending to be stable. The temperature curves on the main and vice planes of the frozen wall all present a “V” type; specifically, the temperature on the axis plane is the lowest, while the temperature away from the axis plane is higher, and the temperature gradient outside the axis plane is greater than that inside. The frozen wall develops from frozen soil columns to a sector ring, and the average thickness of the frozen wall at three sections is 50.6, 40.7 and 75.1 mm after freezing for 60 min, respectively, which shows an obvious non-uniformity. The temperature distribution along the length of the freezing pipe is T = −0.000045z2 + 0.0205z − 13.5125. The freezing temperature contours calculated by ABAQUS are basically consistent with those calculated by the model test after calling the temperature function of the freezing pipe wall.

Funder

National Natural Science Foundation of China

Academic Funding for Top-notch Talents in University Disciplines (Majors) of Anhui Province, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference31 articles.

1. Significance and interaction of factors on mechanical properties of frozen soil;Li;Rock Soil Mech.,2012

2. A Field Study on the Freezing Characteristics of Freeze-Sealing Pipe Roof Used in Ultra-Shallow Buried Tunnel

3. The Freezing of Rock during Drilling;Trupak,1954

4. Select the Best Ore Freezing Mode for Construction Purposes;Bakholdin,1963

5. Ground Freezing in Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3