Multifunctional Models, Including an Artificial Neural Network, to Predict the Compressive Strength of Self-Compacting Concrete

Author:

Ghafor Kawan

Abstract

In this study, three different models were developed to predict the compressive strength of SCC, including the nonlinear relationship (NLR) model, multiregression model (MLR), and artificial neural network. Thus, a set of 400 data were collected and analyzed to evaluate the effect of seven variables that have a direct impact on the CS, such as water to cement ratio (w/c), cement content (C, kg/m3), gravel content (G, kg/m3), sand content (S, kg/m3), fly ash content, (FA, kg/m3), superplasticizer content (SP, kg/m3), and curing time (t, days) up to 365 days. Several statistical assessment parameters, such as the coefficient of determination (R2), root mean squared error (RMSE), mean absolute error (MAE), and scatter index (SI), were used to assess the performance of the predicted models. Depending on the statistical analysis, the median percentage of superplasticizers for the production of SCC was 1.33%. Furthermore, the percentage of fly ash inside all mixes ranged from 0 to 100%, with 1 to 365 days of curing and sand content ranging from 845 to 1066 kg/m3. The results indicated that ANN performed better than other models with the lowest SI values. Curing time has the most impact on forecasts for the CS of SCC modified with FA.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3