Enhancement of Medical Images through an Iterative McCann Retinex Algorithm: A Case of Detecting Brain Tumor and Retinal Vessel Segmentation

Author:

Almalki Yassir EdreesORCID,Jandan Nisar Ahmed,Soomro Toufique AhmedORCID,Ali AhmedORCID,Kumar PardeepORCID,Irfan MuhammadORCID,Keerio Muhammad Usman,Rahman SaifurORCID,Alqahtani AliORCID,Alqhtani Samar M.ORCID,Hakami Mohammed Awaji M.,S Alqahtani SaeedORCID,Aldhabaan Waleed A.,Khairallah Abdulrahman Samir

Abstract

Analyzing medical images has always been a challenging task because these images are used to observe complex internal structures of the human body. This research work is based on the study of the retinal fundus and magnetic resonance images (MRI) for the analysis of ocular and cerebral abnormalities. Typically, clinical quality images of the eyes and brain have low-varying contrast, making it challenge to diagnose a specific disease. These issues can be overcome, and preprocessing or an image enhancement technique is required to properly enhance images to facilitate postprocessing. In this paper, we propose an iterative algorithm based on the McCann Retinex algorithm for retinal and brain MRI. The foveal avascular zone (FAZ) region of retinal images and the coronal, axial, and sagittal brain images are enhanced during the preprocessing step. The High-Resolution Fundus (HRF) and MR brain Oasis images databases are used, and image contrast and peak signal-to-noise ratio (PSNR) are used to assess the enhancement step parameters. The average PSNR enhancement on images from the Oasis brain MRI database was about 3 dB with an average contrast of 57.4. The average PSNR enhancement of the HRF database images was approximately 2.5 dB with a contrast average of 40 over the database. The proposed method was also validated in the postprocessing steps to observe its impact. A well-segmented image was obtained with an accuracy of 0.953 and 0.0949 on the DRIVE and STARE databases. Brain tumors were detected from the Oasis brain MRI database with an accuracy of 0.97. This method can play an important role in helping medical experts diagnose eye diseases and brain tumors from retinal images and Oasis brain images.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3