Multi-Objective Optimization for Outer Rotor Low-Speed Permanent Magnet Motor

Author:

Du GuanghuiORCID,Hu Chengshuai,Zhou Qixun,Gao Wentao,Zhang Qizheng

Abstract

For outer rotor low-speed permanent magnet motors (LSPMMs), in the optimization design process, not only is the electromagnetic performance optimized, but the influence of the thermal load and copper loss on the temperature in the electromagnetic parameters should also be considered. However, these optimized designs that comprehensively consider electromagnetic performance and temperature characteristics are rare in the existing literature. Therefore, this paper focuses on a multi-objective optimization process considering efficiency, thermal load and copper loss. Firstly, according to the initial design, the influence of the design parameters on the efficiency and thermal load is analyzed, and the range of optimization parameters is determined. Next, the response surface is built, the response-surface analysis of electromagnetic performance is performed, and the parameter sensitivity is calculated. Then, the multi-objective optimization design is carried out by comprehensively considering the electromagnetic performance and temperature. Finally, compared with the initial scheme, the optimized scheme improves the efficiency and reduces the temperature, and the optimized scheme is verified by experimentation on a 22 kW, 56 rpm LSPMM prototype, which can provide a reference for the multi-objective optimization of LSPMMs by comprehensively considering the electromagnetic performance and temperature.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3