A Full Load Range ZVS Isolated Three-Level DC/DC Converter with Active Commutation Auxiliary Circuit Suitable for Electric Vehicle Charging Application

Author:

Fan Shaogui,Wen JinweiORCID,Duan JiandongORCID,Song Zitong,Liu Tianyu

Abstract

The isolated three-level DC/DC converter (ITLDC) can be used to charge electric vehicles. During the constant current charging stage, the ITLDC can be designed to realize nature zero voltage switching (ZVS). However, during the constant voltage charging stage, the charging current is small; thus, nature ZVS cannot be realized. This paper presents an active commutation auxiliary circuit (ACAC) for the ITLDC to realize the full load range ZVS. With the proposed ACACs, all the main switches achieve zero-voltage turn-on and quasi zero-voltage turn-off, and the auxiliary switches realize zero current turn-on and zero-voltage turn-off; thus, the efficiency will be high. The auxiliary currents generated by the ACACs are controllable. During the constant current charging stage, the ITLDC realizes nature ZVS and the auxiliary currents are controlled to zero; thus, the ACACs do not result in high current stress or bring in additional losses, and the efficiency will be high. During the constant voltage charging stage, the charging current decreases with charging time and the charging current is too small to realize nature ZVS. Thus, the ITLDC can work with the proposed ACACs and the auxiliary currents can be controlled within a suitable value to realize ZVS. With the proposed ACACs, the ITLDC can realize ZVS during the whole charging process; thus, the efficiency will be high. The structure and operating principle of the ITLDC with ACACs are introduced and the performance of the proposed TLDC is experimentally verified on a 1.5 kW prototype converter.

Funder

National Natural Science Foundation of China

Heilongjiang postdoctoral research starting fund

Heilongjiang Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Charging Systems/Techniques of Electric Vehicle:;Solar Energy and Sustainable Development Journal;2024-06-08

2. Special Issue on Challenges for Power Electronics Converters;Applied Sciences;2022-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3