Ear Centering for Accurate Synthesis of Near-Field Head-Related Transfer Functions

Author:

Urviola AyrtonORCID,Sakamoto Shuichi,Salvador César D.ORCID

Abstract

The head-related transfer function (HRTF) is a major tool in spatial sound technology. The HRTF for a point source is defined as the ratio between the sound pressure at the ear position and the free-field sound pressure at a reference position. The reference is typically placed at the center of the listener’s head. When using the spherical Fourier transform (SFT) and distance-varying filters (DVF) to synthesize HRTFs for point sources very close to the head, the spherical symmetry of the model around the head center does not allow for distinguishing between the ear position and the head center. Ear centering is a technique that overcomes this source of inaccuracy by translating the reference position. Hitherto, plane-wave (PW) translation operators have yield effective ear centering when synthesizing far-field HRTFs. We propose spherical-wave (SW) translation operators for ear centering required in the accurate synthesis of near-field HRTFs. We contrasted the performance of PW and SW ear centering. The synthesis errors decreased consistently when applying SW ear centering and the enhancement was observed up to the maximum frequency determined by the spherical grid.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Headphone-Based Spatial Sound

2. Design theory for binaural synthesis: Combining microphone array recordings and head-related transfer function datasets

3. Surround by Sound: A Review of Spatial Audio Recording and Reproduction

4. Binaural rendering of ambisonic signals via magnitude least squares;Schörkhuber;Proceedings of the DAGA German Annual Conference on Acoustics,2018

5. Spatial Hearing: The Psychophysics of Human Sound Localization;Blauert,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microphone Aligned Continuous Wearable Device-Related Transfer Function: Efficient Modeling and Measurements;2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW);2024-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3