Research on Lateral Bearing Behavior of Spliced Helical Piles with the SPH Method

Author:

Ren Guofeng,Wang Yuxing,Tang Yanqin,Zhao Qingxu,Qiu Zhiguo,Luo Wenhui,Ye Zilong

Abstract

The length of a spliced pile is 2 m assembled from an original spiral pile using a connector. The whole pile is the structure of the upper straight pipe and the lower spiral. The pile–soil model is established with FEM-SPH by LS-DYNA to simulate and analyze the characteristics of the spliced piles. When the helical pile is subjected to a horizontal load, the pile rotates around the point of rotation, and the contact force position of the soil in the model is as expected. During the process of pile driving, the soil forms an inverted cone stress-area, and the maximum particle stress area near the pile tip and the ground surface is 400 Kpa, which is highly concentrated. When loaded laterally, the area of the interaction stress of the soil particles is divided into three regions: the stress effect region; the transition region; and the critical region. Then, 7° is defined as the ultimate horizontal bearing-capacity of the spliced pile, and the numerical simulation of the horizontal bearing-capacity fundamentally matches the test results. The simulation model realizes the transition from the pile installation to the lateral loading, predicts the ultimate horizontal bearing-capacity, and analyzes the stress distribution of the soil particles and the time-development of the soil displacement.

Funder

Guangdong Water Conservancy Science and Technology Innovation Fund project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Introduction of photovoltaic support foundation form and exploration of foundation design;Zhang;Sol. Energy,2020

2. Application and calculation of helical piles for photovoltaic power plants;Zhang;Sol. Energy,2014

3. Visualization of soil arching on reinforced embankment with rigid pile foundation using X-ray CT

4. X-ray CT based clogging analyses of pervious concrete pile by vibrating-sinking tube method

5. Investigation of Failure Patterns in Sand Due to Laterally Loaded Pile Using X-Ray CT

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3