Abstract
Proof of principle of object composition identification based on inductive measurements with an atomic magnetometer has been demonstrated in highly engineered laboratory conditions. Progress in the development of portable miniaturised magnetometers has encouraged on the parallel development of the measurement technologies involving this sensor, in particular concepts that would enable operation in complex test scenarios. Here, we explore the problem of material identification in the context of measurements performed with variable distance between the object and the primary radio-frequency field source and sensor. We identify various aspects of the measurement affected by variable distance and discuss possible solutions, based on the signal phase analysis, a combination of frequency and angular signal dependencies and the implementation of a pair of excitation coils.
Funder
Government Office for Technology Transfer
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献