Long-Term Thermal Stress Analysis and Optimization of Contraction Joint Distance of Concrete Gravity Dams

Author:

Mirković UrošORCID,Kuzmanović Vladan,Todorović Goran

Abstract

Results of the conducted research aiming to demonstrate the methodology of optimization of dam monolith length (distance between contraction joints), through monitoring the thermal tensile stresses during construction and service life of a concrete gravity dam that is built using the block method, are presented in this paper. A 3D space–time numerical model for phased thermal stress analysis is employed in a large concrete gravity dam case study. For the adopted block dimensions, schedule, and dynamics of construction and material parameters, the thermal stress analysis is conducted, taking into account the following: thermal physical properties of the material, the cement hydration process, heat exchange with the external environment and the reservoir, and self-weight of the structure. The main advantage of the proposed methodology is the possibility of controlling the cracks resulting from thermal tensile stresses in the monolith of a concrete gravity dam, by optimizing the monolith’s length to minimize the zones in which the tensile capacity of concrete is exceeded. The results obtained from the temperature field analysis show that the maximum temperature increase in the dam’s body results from the cement hydration process in combination with summer air temperatures in the construction phase. The aforementioned factors account for the increase in temperature of up to 45.0 °C, while during winter cooling of the structure occurs due to lower temperatures, especially in the surface zones. The results of the stress field analysis show that the extreme values of thermal tensile stresses are present in the process of a sudden or gradual cooling of the concrete when shrinkage occurs. Finally, it is shown that the reduction of the monolith length by 5.0 m (from 20.0 m to 15.0 m) results in a decrease in the extreme thermal tensile stress values by an average of 0.70 MPa (up to 12.0%) in winter and an average of 1.10 MPa (up to 20.0%) in summer; while for the entirety of the analyzed time period, results in a decrease in the extreme thermal tensile stress values by an average of 16.0% (0.93 MPa).

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference45 articles.

1. Thermal-Stress Analysis of Roller Compacted Concrete Dams;Kuzmanović;Ph.D. Thesis,2007

2. Minimiarmering i Vattenkraftens Betongkonstruktioner;Blomdahl,2016

3. Guideline for FE Analyses of Concrete Dams;Malm,2016

4. Dams and Appurtenant Hydraulic Structures;Tanchev,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3