Enhancement of Vibration Energy Harvesting Performance by Omni-Directional INVELOX Wind Funnel: A Computational Study

Author:

Ong Zhi ChaoORCID,Kong Keen Kuan,Khoo Shin YeeORCID,Chew Bee Teng,Huang Yu-HsiORCID

Abstract

An alternate renewable energy source, through a piezoelectric vibration energy harvester with a bluff splitter body, could lead to higher efficiency in energy harvesting, through vortex-induced vibration at a near-resonance condition at 20 m/s high wind speed. However, wind energy is not as popular as solar energy, as the main renewable energy source in Malaysia, due to the relatively low wind speed available in the country. The INVELOX machine, introduced in 2014, was one of the most recent systems used to harvest wind power by accelerating wind speed. This omni-directional wind funnel could capture wind from all directions and tunnel it through a convergent-divergent nozzle, where the coupled bluff splitter body and piezoelectric vibration energy harvester (PVEH) are located at its venturi throat, which could lead to an increase in wind speed to fulfil the task of VIV energy harvesting. The proposed modified design is found to achieve 2.7 times the wind speed amplification at the venturi, which outperformed previously proposed designs. To achieve the optimum wind speed of 20 m/s for the coupled bluff splitter body and the PVEH plate, a free-stream wind speed of 7.4 m/s is recommended. The integration of the PVEH plate and the wind funnel is expected to harvest maximum voltage output at 20.99 V or 4.96 V, with a maximum power output of 0.82mW at 20 m/s.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference18 articles.

1. Energy Commission, Energy Malaysia: Towards A World Class Energy Sector

2. Energy Commission, Annual Report 2020

3. Energy policy and alternative energy in Malaysia: Issues and challenges for sustainable growth

4. Assessment of wind power generation potential in Perlis, Malaysia

5. The Evaluation of Wind Energy Potential in Peninsular Malaysia;Siti;Int. J. Chem. Environ. Eng.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3