Deep Q-Learning Technique for Offloading Offline/Online Computation in Blockchain-Enabled Green IoT-Edge Scenarios

Author:

Heidari ArashORCID,Jabraeil Jamali Mohammad AliORCID,Jafari Navimipour Nima,Akbarpour Shahin

Abstract

The number of Internet of Things (IoT)-related innovations has recently increased exponentially, with numerous IoT objects being invented one after the other. Where and how many resources can be transferred to carry out tasks or applications is known as computation offloading. Transferring resource-intensive computational tasks to a different external device in the network, such as a cloud, fog, or edge platform, is the strategy used in the IoT environment. Besides, offloading is one of the key technological enablers of the IoT, as it helps overcome the resource limitations of individual objects. One of the major shortcomings of previous research is the lack of an integrated offloading framework that can operate in an offline/online environment while preserving security. This paper offers a new deep Q-learning approach to address the IoT-edge offloading enabled blockchain problem using the Markov Decision Process (MDP). There is a substantial gap in the secure online/offline offloading systems in terms of security, and no work has been published in this arena thus far. This system can be used online and offline while maintaining privacy and security. The proposed method employs the Post Decision State (PDS) mechanism in online mode. Additionally, we integrate edge/cloud platforms into IoT blockchain-enabled networks to encourage the computational potential of IoT devices. This system can enable safe and secure cloud/edge/IoT offloading by employing blockchain. In this system, the master controller, offloading decision, block size, and processing nodes may be dynamically chosen and changed to reduce device energy consumption and cost. TensorFlow and Cooja’s simulation results demonstrated that the method could dramatically boost system efficiency relative to existing schemes. The findings showed that the method beats four benchmarks in terms of cost by 6.6%, computational overhead by 7.1%, energy use by 7.9%, task failure rate by 6.2%, and latency by 5.5% on average.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3