Improved Twin Delayed Deep Deterministic Policy Gradient Algorithm Based Real-Time Trajectory Planning for Parafoil under Complicated Constraints

Author:

Yu JiamingORCID,Sun Hao,Sun Junqing

Abstract

A parafoil delivery system has usually been used in the fields of military and civilian airdrop supply and aircraft recovery in recent years. However, since the altitude of the unpowered parafoil is monotonically decreasing, it is limited by the initial flight altitude. Thus, combining the multiple constraints, such as the ground obstacle avoidance and flight time, it puts forward a more stringent standard for the real-time performance of trajectory planning of the parafoil delivery system. Thus, to enhance the real-time performance, we propose a new parafoil trajectory planning method based on an improved twin delayed deep deterministic policy gradient. In this method, by pre-evaluating the value of the action, a scale of noise will be dynamically selected for improving the globality and randomness, especially for the actions with a low value. Furthermore, not like the traditional numerical computation algorithm, by building the planning model in advance, the deep reinforcement learning method does not recalculate the optimal flight trajectory of the system when the parafoil delivery system is launched at different initial positions. In this condition, the trajectory planning method of deep reinforcement learning has greatly improved in real-time performance. Finally, several groups of simulation data show that the trajectory planning theory in this paper is feasible and correct. Compared with the traditional twin delayed deep deterministic policy gradient and deep deterministic policy gradient, the landing accuracy and success rate of the proposed method are improved greatly.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference44 articles.

1. Precision Aerial Delivery Systems: Modeling, Dynamics, and Control;Yakimenko,2015

2. Design of Fully Automatic Drone Parachute System with Temperature Compensation Mechanism for Civilian and Military Applications

3. The Effect of Rigging Angle on Longitudinal Direction Motion of Parafoil-Type Vehicle: Basic Stability Analysis and Wind Tunnel Test

4. Aspects of Control for a Parafoil and Payload System

5. An overview of the guided parafoil system derived from X-38 experience;Stein;Proceedings of the 18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar,2005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3