Deep-Learning-Based Framework for PET Image Reconstruction from Sinogram Domain

Author:

Liu Zhiyuan,Ye HuihuiORCID,Liu Huafeng

Abstract

High-quality and fast reconstructions are essential for the clinical application of positron emission tomography (PET) imaging. Herein, a deep-learning-based framework is proposed for PET image reconstruction directly from the sinogram domain to achieve high-quality and high-speed reconstruction at the same time. In this framework, conditional generative adversarial networks are constructed to learn a mapping from sinogram data to a reconstructed image and to generate a well-trained model. The network consists of a generator that utilizes the U-net structure and a whole-image strategy discriminator, which are alternately trained. Simulation experiments are conducted to validate the performance of the algorithm in terms of reconstruction accuracy, reconstruction efficiency, and robustness. Real patient data and Sprague Dawley rat data were used to verify the performance of the proposed method under complex conditions. The experimental results demonstrate the superior performance of the proposed method in terms of image quality, reconstruction speed, and robustness.

Funder

National Natural Science Foundation of China

National Key Technology Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3