Optimal Time–Jerk Trajectory Planning for Delta Parallel Robot Based on Improved Butterfly Optimization Algorithm

Author:

Wu Pu,Wang Zongyan,Jing Hongxiang,Zhao Pengfei

Abstract

In this paper, a multi-objective integrated trajectory planning method based on an improved butterfly optimization algorithm (IBOA) is proposed, to improve the dynamic performance of the Delta parallel pickup robot in high-speed pick-and-place processes. The main objective of the present study is to improve dynamic positioning accuracy and running stability at high speeds and high accelerations. On the one hand, the intention is to ensure smooth motions using the trajectory planning method, and on the other hand to improve the picking efficiency. To this end, the pick-and-place trajectory of the robot is constructed by using NURBS curves in Cartesian space. Taking the time and jerk as the optimization objectives, a trajectory optimization method based on the improved butterfly optimization algorithm (IBOA) is proposed. The IBOA is based on the butterfly optimization algorithm (BOA); a circle chaotic sequence is introduced to replace the random initial population of the original BOA, and the fractional differential is used to improve the convergence speed of the BOA. Then, the problem of parallel segment deformation of the optimized trajectory is solved. Finally, a three-degrees-of-freedom Delta robot is used to evaluate the performance of the prosed algorithm. The obtained results show that, compared with other optimization algorithms, IBOA reduces the optimization time by 16.2%, and the maximum jerk is reduced by 87.6%. The results are better than the optimization results of other algorithms by 14.1% and 27.2%. The robot motion simulation results show that IBOA can effectively reduce the vibration acceleration of the end platform.

Funder

Department of science and technology of Shanxi Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3