TGAN-AD: Transformer-Based GAN for Anomaly Detection of Time Series Data

Author:

Xu Liyan,Xu KangORCID,Qin Yinchuan,Li Yixuan,Huang Xingting,Lin Zhicheng,Ye NingORCID,Ji Xuechun

Abstract

Anomaly detection on time series data has been successfully used in power grid operation and maintenance, flow detection, fault diagnosis, and other applications. However, anomalies in time series often lack strict definitions and labels, and existing methods often suffer from the need for rigid hypotheses, the inability to handle high-dimensional data, and highly time-consuming calculation costs. Generative Adversarial Networks (GANs) can learn the distribution pattern of normal data, detecting anomalies by comparing the reconstructed normal data with the original data. However, it is difficult for GANs to extract contextual information from time series data. In this paper, we propose a new method, Transformer-based GAN for Anomaly Detection of Time Series Data (TGAN-AD), The transformer-based generators of TGAN-AD can extract contextual features of time series data to prompt the performance. TGAN-AD’s discriminator can also assist in determining abnormal data. Anomaly scores are calculated through both the generator and the discriminator. We have conducted comprehensive experiments on three public datasets. Experimental results show that our TGAN-AD has better performance in anomaly detection than the state-of-the-art anomaly detection techniques, with the highest Recall and F1 values on all datasets. Our experiments also demonstrate the high efficiency of the model and the optimal choice of hyperparameters.

Funder

State Key Laboratory of Smart Grid Protection and Control

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3