Author:
Liu Jia,Liu Yan,Zhang Zhe,Wang Hao
Abstract
Electrochemical machining (ECM) is one of the main methods for manufacturing gamma-titanium aluminum (γ-TiAl) alloy blades of new-type aero-engines. Tool-vibration-assisted pulsed electrochemical machining (VPECM) is an important method to improve the manufacturing accuracy. In order to determine the influence of processing parameters on the VPECM quality of γ-TiAl TNM alloys, multi-field simulations with different parameter combinations of peak voltage, feed rate, duty cycle, and tool vibration frequency were carried out. The influence of bubble rate and temperature increase on the conductivity distribution in the machining gap under different parameter combinations was analyzed. Then, orthogonal experiments with the above four processing parameters were carried out. The experimental results of surface roughness, replication accuracy, and average current density in the pulse width were interpreted by a grey relational analysis, and the best parameter combination was determined. Finally, four blade-shaped γ-TiAl TNM alloy specimens were processed by using the optimized parameter combination, which had good replication accuracy and surface quality.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献