Free-Energy Landscape Analysis of Protein-Ligand Binding: The Case of Human Glutathione Transferase A1

Author:

Nicolaï AdrienORCID,Petiot Nicolas,Grassein Paul,Delarue Patrice,Neiers FabriceORCID,Senet Patrick

Abstract

Glutathione transferases (GSTs) are a superfamily of enzymes which have in common the ability to catalyze the nucleophilic addition of the thiol group of reduced glutathione (GSH) onto electrophilic and hydrophobic substrates. This conjugation reaction, which occurs spontaneously but is dramatically accelerated by the enzyme, protects cells against damages caused by harmful molecules. With some exceptions, GSTs are catalytically active as homodimers, with monomers generally constituted of 200 to 250 residues organized into two subdomains. The first is the N-terminal subdomain, which contains an active site named G site, where GSH is hosted in catalytic conformation and which is generally highly conserved among GSTs. The second subdomain, hydrophobic, which binds the substrate counterpart (H site), can vary from one GST to another, resulting in structures able to recognize different substrates. In the present work, we performed all-atom molecular dynamics simulations in explicit solvent of human GSTA1 in its APO form, bound to GSH ligand and bound to GS-conjugated ligand. From MD, two probes were analyzed to (i) decipher the local conformational changes induced by the presence of the ligand and (ii) map the communication pathways involved in the ligand-binding process. These two local probes are, first, coarse-grained angles (θ,γ), representing the local conformation of the protein main chain and, second, dihedral angles χ representing the local conformation of the amino-acid side chains. From the local probes time series, effective free-energy landscapes along the amino-acid sequence were analyzed and compared between the three different forms of GSTA1. This methodology allowed us to extract a network of 33 key residues, some of them being located in the experimentally well-known binding sites G and H of GSTA1 and others being located as far as 30Å from the original binding sites. Finally, the collective motions associated with the network of key residues were established, showing a strong dynamical coupling between residues Gly14-Arg15 and Gln54-Val55, both in the same binding site (intrasite) but also between binding sites of each monomer (intersites).

Funder

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3