Efficient Gene Transfection by Electroporation—In Vitro and In Silico Study of Pulse Parameters

Author:

Potočnik TjašaORCID,Sachdev ShauryaORCID,Polajžer Tamara,Maček Lebar AlenkaORCID,Miklavčič DamijanORCID

Abstract

Gene electrotransfer (GET) is a widely used method for nucleic acids’ delivery into cells. We explored, evaluated, and demonstrated the potential use of different pulse durations for introducing plasmid DNA (pDNA) into cells in vitro and compared the efficiency and dynamics of transgene expression after GET. We performed experiments on cell suspensions of 1306 fibroblasts and C2C12 myoblasts with four ranges of pulse durations (nanosecond, high frequency bipolar (HF-BP), and micro- and millisecond). Six different concentrations of pDNA encoding green fluorescent protein were used. We show that GET can be achieved with nanosecond pulses with a low pulse repetition rate (10 Hz). The GET’s efficiency depends on the pDNA concentration and cell line. Time dynamics of transgene expression are comparable between millisecond, microsecond, HF-BP, and nanosecond pulses but depend greatly on cell line. Lastly, based on the data obtained in the experiments of pDNA concentration effect on GET the model of the probability of pDNA and cell membrane contact during GET was developed. The model shows that pDNA migration is dominated by diffusion for nanosecond and HF-BP pulses and by electrophoresis for micro- and millisecond pulses. Modeling results can provide valuable guidance for further experiments and interpretations of the results obtained by various pulse protocols.

Funder

European Union’s Horizon 2020 research and innovation program

Slovenian Research Agency

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3