Abstract
Falls are the leading cause of accidents among the elderly population. In recent years, radar has been employed in fall detection due to its superior sensing capabilities, small dimensions, low cost and primarily non-intrusive sensing capabilities in addition to its robustness under a range of heat and lighting conditions. In this paper, we present a technique for identifying when a person is falling using a low-power millimeter-wave radar operating in the W-band. This detection, conducted in real time, is based on the transmission of a continuous wave and heterodyning of the received signal reflected from the person to obtain micro-Doppler shifts associated with the person’s motion. These results make it possible to obtain a high-quality time-frequency distribution and spectrogram, from which the person’s unique fall movement characteristics can be determined. In this paper, we present experimental results based on 94 GHz real radar data obtained from a falling person. This carrier frequency is higher than that of current systems, allowing higher frequency resolution and more accurate results. Compared to other tracking systems, this sensor does not simulate or violate privacy. However, the high-frequency system enables high-resolution realizations with high reliability.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference17 articles.
1. Demographic Dimensions of Global Aging
2. Global Aging: The Challenge of Success;Kinsella,2005
3. Falls in the elderly;Fuller;Am. Fam. Physician,2000
4. Camera-based fall detection on real world data;Debard,2012
5. Automatic Fall Detection System Based on the Combined Use of a Smartphone and a Smartwatch
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献