Effects of Bisphenol A Stress on Activated Sludge in Sequential Batch Reactors and Functional Recovery

Author:

Shao Junhua,Tian Kejian,Meng Fanxing,Li Shuaiguo,Li Han,Yu Yue,Qiu Qing,Chang Menghan,Huo Hongliang

Abstract

This study assessed the toxic effects of bisphenol A (BPA) on the microbial community and the function of activated sludge in sequencing batch reactors (SBRs). The toxicity of BPA was mitigated through dosing sludge with Rhodococcus Req-001. BPA reduced the biomass of sludge, and the proportion of viable bacteria decreased with the aggravation of BPA pollution. BPA affected the secretion of extracellular polymeric substances (EPSs), increased the ratio of polysaccharide to protein, and deteriorated the sedimentation performance of sludge. BPA decreased the abundances of functional bacteria involved in the degradation of organic matter and water purification, including Polaromonas, Dechloromonas, and Nitrospira, and the water purification capacity of the reactor decreased. Req-001 enhanced the BPA removal efficiency by 15%, and increased ammonia nitrogen and phosphorus removal by 8.8% and 22.7%, respectively. The functional recovery ability of the sludge system and the high removal ability of Req-001 make it a promising specie for use in BPA bioremediation. This study combined the effect of BPA on activated sludge and reactor performance with the microbial community, clarified the toxic mechanism of BPA on activated sludge, and therefore provides a theoretical basis and potential solutions to help WWTPs cope with the toxic effects of BPA.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3