Application of Low-Altitude UAV Remote Sensing Image Object Detection Based on Improved YOLOv5

Author:

Li ZiranORCID,Namiki AkioORCID,Suzuki Satoshi,Wang Qi,Zhang Tianyi,Wang Wei

Abstract

With the development of science and technology, the traditional industrial structures are constantly being upgraded. As far as drones are concerned, an increasing number of researchers are using reinforcement learning or deep learning to make drones more intelligent. At present, there are many algorithms for object detection. Although many models have a high accuracy of detection, these models have many parameters and high complexity, making them unable to perform real-time detection. Therefore, it is particularly important to design a lightweight object detection algorithm that is able to meet the needs of real-time detection using UAVs. In response to the above problems, this paper establishes a dataset of six animals in grassland from different angles and during different time periods on the basis of the remote sensing images of drones. In addition, on the basis of the Yolov5s network model, a lightweight object detector is designed. First, Squeeze-and-Excitation Networks are introduced to improve the expressiveness of the network model. Secondly, the convolutional layer of branch 2 in the BottleNeckCSP structure is deleted, and 3/4 of its input channels are directly merged with the results of branch 1 processing, which reduces the number of model parameters. Next, in the SPP module of the network model, a 3 × 3 maximum pooling layer is added to improve the receptive field of the model. Finally, the trained model is applied to NVIDIA-TX2 processor for real-time object detection. After testing, the optimized YOLOv5 grassland animal detection model was able to effectively identify six different forms of grassland animal. Compared with the YOLOv3, EfficientDet-D0, YOLOv4 and YOLOv5s network models, the mAP_0.5 value was improved by 0.186, 0.03, 0.007 and 0.011, respectively, and the mAP_0.5:0.95 value was improved by 0.216, 0.066, 0.034 and 0.051, respectively, with an average detection speed of 26 fps. The experimental results show that the grassland animal detection model based on the YOLOv5 network has high detection accuracy, good robustness, and faster calculation speed in different time periods and at different viewing angles.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference49 articles.

1. A first step towards automated species recognition from camera trap images of mammals using AI in a European temperate forest;Choiński;Proceedings of the International Conference on Computer Information Systems and Industrial Management

2. Cost-Performance Evaluation of a Recognition Service of Livestock Activity Using Aerial Images

3. You Only Look Once: Unified, Real-Time Object Detection

4. YOLO9000: Better, Faster, Stronger

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3