Computational Modelling and Simulation of Fluid Structure Interaction in Aortic Aneurysms: A Systematic Review and Discussion of the Clinical Potential

Author:

Mourato AndréORCID,Valente RodrigoORCID,Xavier JoséORCID,Brito MoisésORCID,Avril StéphaneORCID,de Sá José CésarORCID,Tomás AntónioORCID,Fragata JoséORCID

Abstract

Aortic aneurysm is a cardiovascular disease related to the alteration of the aortic tissue. It is an important cause of death in developed countries, especially for older patients. The diagnosis and treatment of such pathology is performed according to guidelines, which suggest surgical or interventional (stenting) procedures for aneurysms with a maximum diameter above a critical threshold. Although conservative, this clinical approach is also not able to predict the risk of acute complications for every patient. In the last decade, there has been growing interest towards the development of advanced in silico aortic models, which may assist in clinical diagnosis, surgical procedure planning or the design and validation of medical devices. This paper details a comprehensive review of computational modelling and simulations of blood vessel interaction in aortic aneurysms and dissection, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). In particular, the following questions are addressed: “What mathematical models were applied to simulate the biomechanical behaviour of healthy and diseased aortas?” and “Why are these models not clinically implemented?”. Contemporary evidence proves that computational models are able to provide clinicians with additional, otherwise unavailable in vivo data and potentially identify patients who may benefit from earlier treatment. Notwithstanding the above, these tools are still not widely implemented, primarily due to low accuracy, an extensive reporting time and lack of numerical validation.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3