Abstract
Media authentication relies on the detection of inconsistencies that may indicate malicious editing in audio and video files. Traditionally, authentication processes are performed by forensics professionals using dedicated tools. There is rich research on the automation of this procedure, but the results do not yet guarantee the feasibility of providing automated tools. In the current approach, a computer-supported toolbox is presented, providing online functionality for assisting technically inexperienced users (journalists or the public) to investigate visually the consistency of audio streams. Several algorithms based on previous research have been incorporated on the backend of the proposed system, including a novel CNN model that performs a Signal-to-Reverberation-Ratio (SRR) estimation with a mean square error of 2.9%. The user can access the web application online through a web browser. After providing an audio/video file or a YouTube link, the application returns as output a set of interactive visualizations that can allow the user to investigate the authenticity of the file. The visualizations are generated based on the outcomes of Digital Signal Processing and Machine Learning models. The files are stored in a database, along with their analysis results and annotation. Following a crowdsourcing methodology, users are allowed to contribute by annotating files from the dataset concerning their authenticity. The evaluation version of the web application is publicly available online.
Subject
Computer Networks and Communications
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Fine-Tuning Languages: Epistemological Foundations for Ethical AI in Journalism;2023 10th IEEE Swiss Conference on Data Science (SDS);2023-06
2. Theory and Applications of Web 3.0 in the Media Sector;Future Internet;2023-04-28
3. Web Application Based Authentication System;2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC);2022-11-18