Transformer-Based Abstractive Summarization for Reddit and Twitter: Single Posts vs. Comment Pools in Three Languages

Author:

Blekanov Ivan S.ORCID,Tarasov NikitaORCID,Bodrunova Svetlana S.ORCID

Abstract

Abstractive summarization is a technique that allows for extracting condensed meanings from long texts, with a variety of potential practical applications. Nonetheless, today’s abstractive summarization research is limited to testing the models on various types of data, which brings only marginal improvements and does not lead to massive practical employment of the method. In particular, abstractive summarization is not used for social media research, where it would be very useful for opinion and topic mining due to the complications that social media data create for other methods of textual analysis. Of all social media, Reddit is most frequently used for testing new neural models of text summarization on large-scale datasets in English, without further testing on real-world smaller-size data in various languages or from various other platforms. Moreover, for social media, summarizing pools of texts (one-author posts, comment threads, discussion cascades, etc.) may bring crucial results relevant for social studies, which have not yet been tested. However, the existing methods of abstractive summarization are not fine-tuned for social media data and have next-to-never been applied to data from platforms beyond Reddit, nor for comments or non-English user texts. We address these research gaps by fine-tuning the newest Transformer-based neural network models LongFormer and T5 and testing them against BART, and on real-world data from Reddit, with improvements of up to 2%. Then, we apply the best model (fine-tuned T5) to pools of comments from Reddit and assess the similarity of post and comment summarizations. Further, to overcome the 500-token limitation of T5 for analyzing social media pools that are usually bigger, we apply LongFormer Large and T5 Large to pools of tweets from a large-scale discussion on the Charlie Hebdo massacre in three languages and prove that pool summarizations may be used for detecting micro-shifts in agendas of networked discussions. Our results show, however, that additional learning is definitely needed for German and French, as the results for these languages are non-satisfactory, and more fine-tuning is needed even in English for Twitter data. Thus, we show that a ‘one-for-all’ neural-network summarization model is still impossible to reach, while fine-tuning for platform affordances works well. We also show that fine-tuned T5 works best for small-scale social media data, but LongFormer is helpful for larger-scale pool summarizations.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference69 articles.

1. Topic modeling: A comprehensive review;Kherwa;EAI Endorsed Trans. Scalable Inf. Syst.,2020

2. Topic Modeling in Russia: Current Approaches and Issues in Methodology;Bodrunova,2021

3. Topic Modeling in Sentiment Analysis: A Systematic Review

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Encoder-Decoder Transformers for Textual Summaries on Social Media Content;Automation, Control and Intelligent Systems;2024-08-15

2. Methods of User Opinion Data Crawling in Web 2.0 Social Network Discussions;Lecture Notes in Computer Science;2024

3. Implementation of Preprocessing in Text Summarization Techniques for Indonesian Language Documents Using the Flax T5 Approach;2023 11th International Conference on Cyber and IT Service Management (CITSM);2023-11-10

4. Designing a Summarization System on Social Comments using Transformers;2023 12th International Conference on Computer Technologies and Development (TechDev);2023-10-14

5. Vision Transformer for Pneumonia Classification in X-ray Images;Proceedings of the 2023 8th International Conference on Intelligent Information Technology;2023-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3