Langmuir Probe Perturbations during In Situ Monitoring of Pulsed Laser Deposition Plasmas

Author:

Irimiciuc Ștefan-AndreiORCID,Chertopalov SergiiORCID,Novotný MichalORCID,Craciun Valentin,Lancok JanORCID,Agop Maricel

Abstract

The recent advancements in pulsed laser deposition (PLD) control via plasma diagnostics techniques have been positive and raised questions on the limitation of some techniques, such as the Langmuir probe (LP). The particularities of laser-produced plasma can lead to incorrect interpretation of collected electrical signal. In this paper, we explored the limitations of LP as a technique for in situ PLD control by performing investigations on several metallic plasmas, expanding in various Ar atmosphere conditions. Sub-microsecond modulation was seen in the reconstructed IV characteristics attributed to non-equilibrium dynamics of the ejected charges. A perturbative regime was recorded for Ar pressures higher than 2 Pa, where ionic bursts were observed in the electron saturation region. This perturbation was identified as a plasma fireball. A non-linear multifractal model was developed here to explore these new regimes of the LP. The strange attractors characterizing each fireball were reconstructed, and their evolution with the Ar pressure is discussed. Both short- and long-time non-linear behavior were correlated via probe bias, and the pressure effect on the strange attractor’s defining the fireball-like behavior was investigated. A good correlation was noticed between the simulated data and experimental findings.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3