Author:
Liu Yinglong,Lin Pengzhen,He Zhigang,Ma Junjun
Abstract
In order to quantitatively analyze the factors affecting the carbonation of reinforced concrete structures, the carbonation coefficient model is established based on 1834 groups of test data from natural carbonation and indoor accelerated tests in this paper. The main factors considered in the statistical model are the environmental temperature, the concentration of carbon dioxide, relative humidity, water–cement ratio, fly ash replacement, compressive strength of 28 days, curing time, compaction type, exposure to a salt environment, and environmental exposure classes. Based on the multiple nonlinear regression method, the carbonation coefficient model is fitted in two sections according to the different environmental exposures of the concrete structure. To analyze the applicability of the formula, the statistical formulas of relative humidity less than 70% and relative humidity higher than 70% are verified by the test data, and satisfactory results are obtained. Based on the quantitative analysis of the statistical model, the specific effects of relative humidity, strength, carbon dioxide content, fly ash, and curing time on concrete carbonation are clarified. The results show that the factors affecting carbonation are also different with different humidity values in the exposed environment of the concrete structure. When the relative humidity of the exposed environment is less than 70%, the parameters that have a great impact on concrete carbonation are fly ash replacement, compressive strength of 28 days, relative humidity, and the concentration of carbon dioxide. Among them, fly ash replacement, relative humidity, and the concentration of carbon dioxide can promote the carbonation of concrete. When the relative humidity of the exposed environment is higher than 70%, the parameters that have a great impact on concrete carbonation are the concentration of carbon dioxide, relative humidity, compressive strength of 28 days, curing time, and exposure classes. Only the concentration of carbon dioxide is conducive to the carbonation of concrete, and relative humidity has a very significant effect on concrete carbonation.
Funder
National Natural Science Foundation of China
outh Doctor Foundation of Gansu Province
Subject
General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献