Electrical Resistivity Measurements for Nondestructive Evaluation of Chloride-Induced Deterioration of Reinforced Concrete—A Review

Author:

Robles Kevin Paolo V.ORCID,Yee Jurng-Jae,Kee Seong-HoonORCID

Abstract

The objective of this study is to review, evaluate, and compare the existing research and practices on electrical resistivity as a nondestructive technique in evaluating chloride-induced deterioration of reinforced concrete elements in buildings and civil infrastructure systems. First, this paper summarizes the different measurement techniques for gathering electrical resistivity (ER) values on concrete. Second, comparison analyses are performed to review the correlation of ER to different parameters representing corrosive environment and activity of steel corrosion in concrete, such as degree of water saturation, chloride penetration and diffusivity, and corrosion rate. In addition, this research enumerates and individually discusses the different environmental and interference factors that are not related to the electrochemical process of steel corrosion in concrete but directly affect the ER measurements, including temperature, the presence of steel reinforcement, cracks and delamination defects, specimen geometry, and concrete composition. Lastly and most importantly, discussions are made to determine the current gap of knowledge, to improve the utilization of this method in field and laboratory measurements, and future research.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Subject

General Materials Science

Reference217 articles.

1. Corrosion of Reinforced Concrete Exposed to Marine Atmosphere;Venkatesan;Trans. SAEST,2003

2. Introduction;Pacheco-Torgal,2018

3. Influence of humidity and temperature on the corrosion of reinforced concrete prisms

4. Assessment condition of RC corroded column by non-destructive testing methods

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3