Graphite Compactness Degree and Nodularity of High-Si Ductile Iron Produced via Permanent Mold versus Sand Mold Casting

Author:

Anca Denisa-Elena,Stan Iuliana,Riposan Iulian,Stan Stelian

Abstract

In recent years, high-Si ductile cast irons (3–6% Si) have begun to be used more and more in the automotive and maritime industries, but also in wind energy technology and mechanical engineering. Si-alloyed ferrite has high strength, hardness and oxidation and corrosion resistance, but it has low ductility, toughness and thermal conductivity, with graphite as an important influencing factor. In this study, 4.5% Si uninoculated ductile iron solidified in thin wall castings (up to 15 mm section size) via a permanent (metal) mold versus a sand mold, was evaluated. Solidification in a metal mold led to small size, higher graphite particles (less dependent on the section size). The graphite particles’ real perimeter was 3–5% higher than the convex perimeter, while the values of these parameters were 41–43% higher in the sand mold. Increasing the casting section size led to an increased graphite perimeter, with it being much higher for sand mold. The graphite particles’ shape factors, involving the maximum and minimum size, were at a lower level for metal mold solidification, while by involving the difference between Pr and Pc, is higher for the metal mold. The shape factor, including the graphite area and maximum size, had higher values in the metal mold, sustaining a higher compactness degree of graphite particles and a higher nodularity regarding metal mold solidification (75.5% versus 67.4%). The higher was due to the graphite compactness degree level (shape factor increasing from 0.50 up to 0.80), while the lower was due to the graphite nodularity for both the metal mold (39.1% versus 88.5%) and the sand mold (32.3% versus 83.1%). The difference between the metal mold and sand mold as the average graphite nodularity increased favored the metal mold.

Publisher

MDPI AG

Subject

General Materials Science

Reference31 articles.

1. Cast Iron: A Historical and Green Material Worthy of Continuous Research

2. Iron Quality Control during Melting in Coreless Induction Furnace;Riposan;AFS Trans.,2009

3. Complex (Mn, X) S compounds-major sites for graphite nucleation in grey cast iron;Riposan;China Foundry,2009

4. Cast Ironhttps://en.wikipedia.org/wiki/Ductile_iron

5. Spheroidal Graphite Cast Irons—Classificationhttps://www.iso.org/standard/66643.html

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3