Development of High-Tech Self-Compacting Concrete Mixtures Based on Nano-Modifiers of Various Types

Author:

Stel’makh Sergey A.ORCID,Shcherban’ Evgenii M.ORCID,Beskopylny AlexeyORCID,Mailyan Levon R.,Meskhi Besarion,Beskopylny Nikita,Zherebtsov Yuriy

Abstract

Promising areas of concrete material science are maximum greening, reducing the carbon footprint, and, at the same time, solving the problems of increasing the cost of raw materials using industrial waste as modifiers for self-compacting concrete mixtures. This study aimed to review, investigate and test from the point of view of theory and practice the possibility of using various industrial types as a nano-modifier in self-compacting concrete with improved performance. The possibility of nano-modification of self-compacting concrete with a complex modifier based on industrial waste has been proved and substantiated theoretically and experimentally. The possibility of improving the technological properties of concrete mixtures using such nanomodifiers was confirmed. The recipe and technological parameters of the process were revealed and their influence on the characteristics of concrete mixes and concretes were expressed and determined. Experimental technological and mathematical dependencies between the characteristics of the technological process and raw materials and the characteristics of concrete mixtures and concretes were determined. The optimization of these parameters was carried out, a theoretical substantiation of the obtained results was proposed, and a quantitative picture was presented, expressed in the increment of the properties of self-compacting concrete mixtures using nano-modifiers from industrial waste concretes based on them. The mobility of the concrete mixture increased by 12%, and the fluidity of the mixture increased by 83%. In relation to the control composition, the concrete strength increased by 19%, and the water resistance of concrete increased by 22%. The ultimate strains decreased by 14%, and elastic modulus increased by 11%.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3