Preference Index of Sustainable Natural Fibers in Stone Matrix Asphalt Mixture Using Waste Marble

Author:

Singh Sandeep,Khairandish Mohammad Iqbal,Razahi Mustafa Musleh,Kumar RamanORCID,Chohan Jasgurpreet SinghORCID,Tiwary Aditya,Sharma ShubhamORCID,Li ChangheORCID,Ilyas R. A.ORCID,Asyraf M. R. M.ORCID,Zakaria S. Z. S.

Abstract

The present study investigates the preference index of natural fibers such as sisal, coir, and rice straw fibers in stone matrix asphalt mixtures (SMA), using waste marble as filler. Waste marble was used as the filler in asphalt mixtures and was crushed by abrasion machine and sieved according to SMA filler requirements. The SEM topography and EDS analysis of sisal, coir, and rice straw fibers were also carried out. The Marshall test was conducted, which is the most acceptable, cost-effective, and widely adopted method to estimate the optimum bitumen and to examine several Marshall Measures, such as flow value, voids filled with bitumen (VFB), stability, voids in mineral aggregate (VMA), and air voids (VA). Furthermore, tests were performed on the specimen with the optimum amount of bitumen, different percentages of fibers, and waste marble as filler to calculate drain down, moister sensitivity, and Marshall Stability. Multi-criteria decision-making (MCDM) techniques were implemented to obtain subjective and objective weights, which were further used to compute the values of the preference index of natural fiber contents. The outcomes revealed favorable results for the usage of marble dust as filler in Stone Matrix Asphalt (SMA). In addition, the preference index upshots are inclined toward the usage of rice straw over coir followed by sisal fiber. It was observed that the value of the preference index in rice straw at 0.3 varied from 0.918, 0.925, and 0.931 in rice straw using equal, objective, and subjective weights, respectively. The maximum drain down value observed is 0.335 based on ASTM-D 6390 and IRC-SP-79 are against 0.3 percent natural fiber. Moreover, as per the prescribed limit of MoRTH, because of the thin film around aggregates, moisture susceptibility characteristics, i.e., better resistance to moisture, were enhanced by more than 80%.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3