Hybrid Lime–Pozzolan Geopolymer Systems: Microstructural, Mechanical and Durability Studies

Author:

Villca Ariel ReyORCID,Soriano LourdesORCID,Borrachero María VictoriaORCID,Payá JordiORCID,Monzó José MaríaORCID,Tashima Mauro Mitsuuchi

Abstract

This work studies the possibility of using geopolymer materials to enhance the mechanical and durability properties of hydrated lime–pozzolan mixtures, which gave rise to the so-called “hybrid systems”. Two different waste types were used as pozzolan in the lime–pozzolan system: rice husk ash (RHA) and spent fluid catalytic cracking (FCC). The geopolymer fabricated with FCC was activated with commercial reagents (NaOH and Na2SiO3), and also with alternative sources of silica to obtain a lower carbon footprint in these mixtures. The alternative silica sources were RHA and residual diatomaceous earth (RDE) from the beer industry. The geopolymer mixture substituted the lime–pozzolan mixture for 30% replacement in weight. The hybrid systems showed better mechanical strengths for the short and medium curing ages in relation to the lime–pozzolan mixtures. Thermogravimetric analyses were performed to characterise the types of products formed in these mixtures. In the durability studies, hybrid systems better performed in freeze–thaw cycles and obtained lower capillarity water absorption values.

Funder

Ministry of Economy, Industry and Competitiveness

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3