A Review of Flow Characterization of Metallic Materials in the Cold Forming Temperature Range and Its Major Issues

Author:

Joun Man-SooORCID,Razali Mohd Kaswandee,Jee Chang-Woon,Byun Jong-Bok,Kim Min-Cheol,Kim Kwang-Min

Abstract

We focus on the importance of accurately describing the flow behaviors of metallic materials to be cold formed; we refer to several valuable examples. We review the typical experimental methods by which flow curves are obtained, in addition to several combined experimental-numerical methods. The characteristics of four fundamental flow models including the Ludwik, Voce, Hollomon, and Swift models are explored in detail. We classify all flow models in the literature into three groups, including the Ludwik and Voce families, and blends thereof. We review the experimental and numerical methods used to optimize the flow curves. Representative flow models are compared via tensile testing, with a focus on the necking point and pre- or post-necking strain hardening. Several closed-form function models employed for the non-isothermal analyses of cold metal forming are also examined. The traditional bilinear C-m model and derivatives thereof are used to describe the complicated flow behaviors of metallic materials at cold forming temperatures, particularly in terms of their applications to metal forming simulations and process optimization.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3