A Multidisciplinary Investigation into the Talent Development Processes at an English Football Academy: A Machine Learning Approach

Author:

Kelly Adam L.ORCID,Williams Craig A.ORCID,Cook Rob,Sáiz Sergio Lorenzo JiménezORCID,Wilson Mark R.ORCID

Abstract

The talent development processes in youth football are both complex and multidimensional. The purpose of this two-fold study was to apply a multidisciplinary, machine learning approach to examine: (a) the developmental characteristics of under-9 to under-16 academy players (n = 98; Study 1), and (b) the characteristics of selected and deselected under-18 academy players (n = 18; Study 2). A combined total of 53 factors cumulated from eight data collection methods across two seasons were analysed. A cross-validated Lasso regression was implemented, using the glmnet package in R, to analyse the factors that contributed to: (a) player review ratings (Study 1), and (b) achieving a professional contract (Study 2). Results showed non-zero coefficients for improvement in subjective performance in 15 out of the 53 analysed features, with key findings revealing advanced percentage of predicted adult height (0.196), greater lob pass (0.160) and average dribble completion percentage (0.124), more total match-play hours (0.145), and an older relative age (BQ1 vs. BQ2: −0.133; BQ1 vs. BQ4: −0.060) were the most important features that contributed towards player review ratings. Moreover, PCDEQ Factor 3 and an ability to organise and engage in quality practice (PCDEQ Factor 4) were important contributing factors towards achieving a professional contract. Overall, it appears the key factors associated with positive developmental outcomes are not always technical and tactical in nature, where coaches often have their expertise. Indeed, the relative importance of these factors is likely to change over time, and with age, although psychological attributes appear to be key to reaching potential across the academy journey. The methodological techniques used here also serve as an impetus for researchers to adopt a machine learning approach when analysing multidimensional databases.

Publisher

MDPI AG

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3