The Neuromuscular Fatigue-Induced Loss of Muscle Force Control

Author:

Pethick Jamie,Tallent Jamie

Abstract

Neuromuscular fatigue is characterised not only by a reduction in the capacity to generate maximal muscle force, but also in the ability to control submaximal muscle forces, i.e., to generate task-relevant and precise levels of force. This decreased ability to control force is quantified according to a greater magnitude and lower complexity (temporal structure) of force fluctuations, which are indicative of decreased force steadiness and adaptability, respectively. The “loss of force control” is affected by the type of muscle contraction used in the fatiguing exercise, potentially differing between typical laboratory tests of fatigue (e.g., isometric contractions) and the contractions typical of everyday and sporting movements (e.g., dynamic concentric and eccentric contractions), and can be attenuated through the use of ergogenic aids. The loss of force control appears to relate to a fatigue-induced increase in common synaptic input to muscle, though the extent to which various mechanisms (afferent feedback, neuromodulatory pathways, cortical/reticulospinal pathways) contribute to this remains to be determined. Importantly, this fatigue-induced loss of force control could have important implications for task performance, as force control is correlated with performance in a range of tasks that are associated with activities of daily living, occupational duties, and sporting performance.

Publisher

MDPI AG

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Reference111 articles.

1. Some central and peripheral factors affecting human motoneuronal output in neuromuscular fatigue;Sports Med.,1992

2. Translating fatigue to human performance;Med. Sci. Sports Exerc.,2016

3. Skeletal muscle fatigue: Cellular mechanisms;Phys. Rev.,2008

4. Mechanisms that contribute to differences in motor performance between young and old adults;J. Electromyogr. Kinesiol.,2003

5. The accuracy of voluntary movement;Pschol. Rev.,1899

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3