Tree Species Classification Based on Sentinel-2 Imagery and Random Forest Classifier in the Eastern Regions of the Qilian Mountains

Author:

Ma Minfei,Liu Jianhong,Liu Mingxing,Zeng Jingchao,Li Yuanhui

Abstract

Obtaining accurate forest coverage of tree species is an important basis for the rational use and protection of existing forest resources. However, most current studies have mainly focused on broad tree classification, such as coniferous vs. broadleaf tree species, and a refined tree classification with tree species information is urgently needed. Although airborne LiDAR data or unmanned aerial vehicle (UAV) images can be used to acquire tree information even at the single tree level, this method will encounter great difficulties when applied to a large area. Therefore, this study takes the eastern regions of the Qilian Mountains as an example to explore the possibility of tree species classification with satellite-derived images. We used Sentinel-2 images to classify the study area’s major vegetation types, particularly four tree species, i.e., Sabina przewalskii (S.P.), Picea crassifolia (P.C.), Betula spp. (Betula), and Populus spp. (Populus). In addition to the spectral features, we also considered terrain and texture features in this classification. The results show that adding texture features can significantly increase the separation between tree species. The final classification result of all categories achieved an accuracy of 86.49% and a Kappa coefficient of 0.83. For trees, the classification accuracy was 90.31%, and their producer’s accuracy (PA) and user’s (UA) were all higher than 84.97%. We found that altitude, slope, and aspect all affected the spatial distribution of these four tree species in our study area. This study confirms the potential of Sentinel-2 images for the fine classification of tree species. Moreover, this can help monitor ecosystem biological diversity and provide references for inventory estimation.

Funder

China's National Natural Science Foundation

Natural Science Foundation of Shaanxi Provincial Department of Education

Publisher

MDPI AG

Subject

Forestry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3