Numerical Investigation on Progressive Collapse Mitigation of Steel Beam–Column Joint Using Steel Plates

Author:

Alrubaidi MohammedORCID,Alhammadi S. A.ORCID

Abstract

This research employed extensive numerical analyses to locate the weak areas and determine the structural issues critical to preventing the spread of collapse. As a result, three specimens were tested using scaled models of strengthened and unstrengthened steel beam–column joint assemblies. The data were utilized to verify numerical models. One simple shear joint from the three experimental assemblies was used as the control specimen (unstrengthened joint). The second was a bolted steel beam–column joint utilized as a reference specimen to reflect the ideal beam–column joint generally employed in intermediate moment-resisting frames in seismic zones worldwide. Similar to the control, the third specimen (strengthened joint) had two side plates welded together to strengthen the connection site. Numerical finite element models were developed using ABAQUS (2020) software to extensively investigate the behavior of steel frame assemblies before and after upgrading. The FEM matrix comprised 17 specimens with varying parameters, including plate thickness, steel grade, a joint between the beam flange-strengthening plates, and a column that was either welded or not welded. The effectiveness of the strengthening techniques was established by comparing the mode of failure and load–displacement characteristics of the investigated specimens. The results indicate that the average increase in peak load due to a change in plate thickness for grades A36 and A572 is approximately 22% and 8%, respectively. Plates made of A572 steel increase peak load by 30%. All strengthened specimens attained catenary action, mitigating the possibility of progressive collapse.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

General Materials Science

Reference38 articles.

1. Progressive Collapse of the World Trade Center: Simple Analysis

2. Progressive collapse analysis of high-rise building with 3-D finite element modeling method

3. Progressive collapse analysis of seismically designed steel braced frames

4. Mechanics of progressive collapse: Learning from world trade center and building demolitions;Bazant;J. Eng. Mech.,2007

5. Design Methods for Reducing the Risk of Progressive Collapse in Buildings;Leyendecker,1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3