Abstract
For the collapse of the working layer of dry vibrating material during preheating, the four-strand tundish of a steel plant was taken as a prototype for numerical simulation. The software ANSYS was used to calculate the temperature field and stress and strain field on the working layer under three preheating stages through the indirect coupling method. The results show that during the preheating process, the temperature field distribution on the hot surface of the working layer gradually develops toward uniformity with the increase in preheating temperature. However, the temperature gradient between the cold and hot surfaces increases subsequently, and the highest temperature between the cold and hot surfaces reaches 145.31 °C in the big fire stage. The stress on the top of the working layer is much larger than in other areas, and the maximum tensile stress on the top reaches 39.06 MPa in the third stage of preheating. Therefore, the damage to the working layer starts from the top of the tundish. In addition, the strain of the area near the sidewall burner nozzle in the casting area is much larger than that in the middle burner area with the increase in preheating temperature. Thus, the working layer near the sidewall burner nozzle is more prone to damage and collapse compared with the middle burner nozzle.
Funder
National Natural Science Foundation of China
Hubei Provincial Natural Science Foundation
State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献