Nonstoichiometry Defects in Double Oxides of the A2BO4-Type

Author:

Gorkusha Aleksandr S.ORCID,Tsybulya Sergey V.,Cherepanova Svetlana V.ORCID,Gerasimov Evgeny Y.ORCID,Pavlova Svetlana N.

Abstract

Double oxides with the structure of the Ruddlesden–Popper (R-P) layered perovskite An+1BnO3n+1 attract attention as materials for various electrochemical devices, selective oxygen-permeable ceramic membranes, and catalytic oxidative reactions. In particular, Sr2TiO4 layered perovskite is considered a promising catalyst in the oxidative coupling of methane. Our high-resolution transmission electron microscopy (HRTEM) studies of Sr2TiO4 samples synthesized using various methods have shown that their structure often contains planar defects disturbing the periodicity of layer alternation. This is due to the crystal-chemical features of the R-P layered perovskite-like oxides whose structure is formed by n consecutive layers of perovskite (ABO3)n in alternating with layers of rock-salt type (AO) in various ways along the c crystallographic direction. Planar defects can arise due to a periodicity violation of the layers alternation that also leads to a violation of the synthesized phase stoichiometry. In the present work, a crystallochemical analysis of the possible structure of planar defects is carried out, structures containing defects are modeled, and the effect of such defects on the X-ray diffraction patterns of oxides of the A2BO4 type using Sr2TiO4 is established as an example. For the calculations, we used the method of constructing probabilistic models of one-dimensionally disordered structures. For the first time, the features of diffraction were established, and an approach was demonstrated for determining the concentration of layer alternation defects applicable to layered perovskite-like oxides of the A2BO4 type of any chemical composition. A relation has been established between the concentration of planar defects and the real chemical composition (nonstoichiometry) of the Sr2TiO4 phase. The presence of defects leads to the Ti enrichment of particle volume and, consequently, to the enrichment of the surface with Sr. The latter, in turn, according to the data of a number of authors, can serve as an explanation for the catalytic activity of Sr2TiO4 in the oxidative coupling of methane.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3