Influence Mechanism of Ageing Parameters of Cu-Cr-Zr Alloy on Its Structure and Properties

Author:

Ma Yuxia,Chen Huiqin,Li Hui,Dang Shue

Abstract

The Cu-1.0% Cr-0.1% Zr alloy in a solid solution state was investigated by ageing treatments at different temperatures and holding times. The structure and performance were characterized and tested by using X-ray diffraction (XRD), a transmission electron microscope (TEM), a universal material testing machine, and an eddy conductivity detector. The influence laws of ageing temperature and the holding time on the structures and properties of the Cu-Cr-Zr alloy were analyzed. Results demonstrated that, with the increase in ageing temperature and holding time, the percentage and size of the Cr precipitated phase increased, and the dislocation density decreased. The tensile strength first increased to the peak value and then decreased. The electrical conductivity increased and the amplitude decreased. The tensile strength of the alloy reached the peak (359 ± 2 MPa) after ageing at 450 °C for 60 min, and the electrical conductivity was 91.9 ± 0.7% IACS. In addition, in the ageing precipitation process, the chromium precipitated phase had face-centered cubic structure (FCC) and body-centered cubic structure (BCC) structures, and the FCC Cr phase can be transformed into a BCC Cr phase. FCC Cr, BCC Cr, and Cu3Zr precipitation phases maintained different orientation relationships with the Cu substrate.

Funder

Major Special Project of Shanxi Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3