Abstract
Nanoscale zero-valent iron (nZVI) particles have proved to be effective in the remediation of chlorinated compounds and heavy metals from contaminated soil. The present study aimed to analyze the performance of nanoparticles synthesized from low-cost biomass (green leaves) as chemical precursors, namely Azadirachta indica (neem) and Mentha longifolia (mint) leaves. These leaves were chosen because huge amounts of them are present in the region of Vellore. These nanoparticles were used to remove lead and nickel from contaminated soil. Characterization of nZVI particles was conducted using the Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), and Brunauer–Emmett–Teller isotherm (BET) techniques. Remediation was performed on two different soil samples, polluted with lead or nickel at an initial metal concentration around 250 mg/kg of soil. The results revealed that after 30 days, the lead removal efficiency with 0.1 g of nZVI particles/kg of soil was 26.9% by particles synthesized using neem leaves and 62.3% by particles synthesized using mint leaves. Similarly, nickel removal efficiency with 0.1 g of particles/kg of soil was 33.2% and 50.6%, respectively, by particles using neem and mint leaves. When the nanoparticle concentration was doubled, Pb and Ni removal improved, with similar trends obtained at a lower dosage (0.1 g of particles/kg of soil). These first results evidenced that: (1) the nZVI particles synthesized using green leaves had the potential to remove Pb and Ni from contaminated soil; (2) the neem-derived particles gave better Ni removal efficiency than Pb one; (3) the mint-derived particles showed better Pb removal efficiency than Ni one; (4) the highest removal efficiency for both metals was achieved with the mint-derived particles; (5) double higher dosage did not greatly improve the results.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Reference35 articles.
1. Trace Metals in Soils and Plants;Kabata-Pendias,2001
2. Phytoextraction of lead from industrial effluents by sunflower (Helianthus Annuus. L);Usha;Rasayan J. Chem.,2011
3. Chemical oxidation of mesoporous carbon foams for lead ion adsorption
4. National Safety Councilhttps://www.nsc.org/new_resources/%20resources/document/lead_poisoning
5. Biosorption of lead(II) ions onto waste biomass of Phaseolus vulgaris L.: estimation of the equilibrium, kinetic and thermodynamic parameters
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献